Comparison Overview

Clovis Unified School District

VS

Hillsborough County Public Schools

Clovis Unified School District

1450 Herndon Avenue, None, Clovis, California, US, 93611
Last Update: 2025-07-28 (UTC)
Between 900 and 1000

Excellent

"A distinguished tradition of award-winning people and schools..." Located halfway between Los Angeles and San Francisco, the Fresno/Clovis area lies at the foot of the Sierra Nevada, in the geographical and economic heart of the agriculture-rich San Joaquin Valley. Clovis Unified School District is a K-12 public school system that serves the cities of Clovis and Fresno, some unincorporated areas of Fresno County, and the rural community of Friant. The District covers approximately 198-square miles, and has a student population exceeding 40,000.

NAICS: 6111
NAICS Definition: Elementary and Secondary Schools
Employees: 2,277
Subsidiaries: 0
12-month incidents
0
Known data breaches
0
Attack type number
0

Hillsborough County Public Schools

Last Update: 2024-05-13 (UTC)

Excellent

Between 900 and 1000

Hillsborough County Public Schools is the seventh largest school district in the nation with more than 210,000 students. More than 50,000 students attend a school through one of the districtโ€™s many school choice programs. HCPS is the largest employer in Hillsborough County with more than 25,000 employees. HCPS has more than 270 school sites including 141 K-5 elementary schools, 43 middle schools, 27 high schools, 5 K-8 schools and 47 charter schools. HCPS features many distinct programs, which provide students with unique learning opportunities. Examples of these programs include Magnet, International Baccalaureate, Career and Technical Education, and Advanced Academics, such as Advanced Placement and Dual Enrollment courses.

NAICS: 6111
NAICS Definition: Elementary and Secondary Schools
Employees: 12,699
Subsidiaries: 1
12-month incidents
0
Known data breaches
0
Attack type number
1

Compliance Badges Comparison

Security & Compliance Standards Overview

https://images.rankiteo.com/companyimages/clovis-unified-school-district.jpeg
Clovis Unified School District
โ€”
ISO 27001
Not verified
โ€”
SOC 2
Not verified
โ€”
GDPR
No public badge
โ€”
PCI DSS
No public badge
https://images.rankiteo.com/companyimages/hillsboroughschools.jpeg
Hillsborough County Public Schools
โ€”
ISO 27001
Not verified
โ€”
SOC 2
Not verified
โ€”
GDPR
No public badge
โ€”
PCI DSS
No public badge
Compliance Summary
Clovis Unified School District
100%
Compliance Rate
0/4 Standards Verified
Hillsborough County Public Schools
0%
Compliance Rate
0/4 Standards Verified

Benchmark & Cyber Underwriting Signals

Incidents vs Primary and Secondary Education Industry Average (This Year)

No incidents recorded for Clovis Unified School District in 2025.

Incidents vs Primary and Secondary Education Industry Average (This Year)

No incidents recorded for Hillsborough County Public Schools in 2025.

Incident History โ€” Clovis Unified School District (X = Date, Y = Severity)

Clovis Unified School District cyber incidents detection timeline including parent company and subsidiaries

Incident History โ€” Hillsborough County Public Schools (X = Date, Y = Severity)

Hillsborough County Public Schools cyber incidents detection timeline including parent company and subsidiaries

Notable Incidents

Last 3 Security & Risk Events by Company

https://images.rankiteo.com/companyimages/clovis-unified-school-district.jpeg
Clovis Unified School District
Incidents

No Incident

https://images.rankiteo.com/companyimages/hillsboroughschools.jpeg
Hillsborough County Public Schools
Incidents

Date Detected: 09/2023
Type:Data Leak
Blog: Blog

FAQ

Both Clovis Unified School District company and Hillsborough County Public Schools company demonstrate a comparable AI risk posture, with strong governance and monitoring frameworks in place.

Hillsborough County Public Schools company has historically faced a number of disclosed cyber incidents, whereas Clovis Unified School District company has not reported any.

In the current year, Hillsborough County Public Schools company and Clovis Unified School District company have not reported any cyber incidents.

Neither Hillsborough County Public Schools company nor Clovis Unified School District company has reported experiencing a ransomware attack publicly.

Neither Hillsborough County Public Schools company nor Clovis Unified School District company has reported experiencing a data breach publicly.

Neither Hillsborough County Public Schools company nor Clovis Unified School District company has reported experiencing targeted cyberattacks publicly.

Neither Clovis Unified School District company nor Hillsborough County Public Schools company has reported experiencing or disclosing vulnerabilities publicly.

Hillsborough County Public Schools company has more subsidiaries worldwide compared to Clovis Unified School District company.

Hillsborough County Public Schools company employs more people globally than Clovis Unified School District company, reflecting its scale as a Primary and Secondary Education.

Latest Global CVEs (Not Company-Specific)

Description

Apache Geode is vulnerable to CSRF attacks through GET requests to the Management and Monitoring REST API that could allow an attacker who has tricked a user into giving up their Geode session credentials to submit malicious commands on the target system on behalf of the authenticated user. This issue affects Apache Geode: versions 1.10 through 1.15.1 Users are recommended to upgrade to version 1.15.2, which fixes the issue.

Description

The Related Posts Lite plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 1.12 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled.

Risk Information
cvss3
Base: 4.4
Severity: HIGH
CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:C/C:L/I:L/A:N
Description

The Theme Editor plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 3.0. This is due to missing or incorrect nonce validation on the 'theme_editor_theme' page. This makes it possible for unauthenticated attackers to achieve remote code execution via a forged request granted they can trick a site administrator into performing an action such as clicking on a link.

Risk Information
cvss3
Base: 8.8
Severity: LOW
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
Description

A vulnerability has been found in Nixdorf Wincor PORT IO Driver up to 1.0.0.1. This affects the function sub_11100 in the library wnport.sys of the component IOCTL Handler. Such manipulation leads to stack-based buffer overflow. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used. Upgrading to version 3.0.0.1 is able to mitigate this issue. Upgrading the affected component is recommended. The vendor was contacted beforehand and was able to provide a patch very early.

Risk Information
cvss2
Base: 6.8
Severity: LOW
AV:L/AC:L/Au:S/C:C/I:C/A:C
cvss3
Base: 7.8
Severity: LOW
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
cvss4
Base: 8.5
Severity: LOW
CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N/E:P/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X
Description

In the Linux kernel, the following vulnerability has been resolved: net: mscc: ocelot: Fix use-after-free caused by cyclic delayed work The origin code calls cancel_delayed_work() in ocelot_stats_deinit() to cancel the cyclic delayed work item ocelot->stats_work. However, cancel_delayed_work() may fail to cancel the work item if it is already executing. While destroy_workqueue() does wait for all pending work items in the work queue to complete before destroying the work queue, it cannot prevent the delayed work item from being rescheduled within the ocelot_check_stats_work() function. This limitation exists because the delayed work item is only enqueued into the work queue after its timer expires. Before the timer expiration, destroy_workqueue() has no visibility of this pending work item. Once the work queue appears empty, destroy_workqueue() proceeds with destruction. When the timer eventually expires, the delayed work item gets queued again, leading to the following warning: workqueue: cannot queue ocelot_check_stats_work on wq ocelot-switch-stats WARNING: CPU: 2 PID: 0 at kernel/workqueue.c:2255 __queue_work+0x875/0xaf0 ... RIP: 0010:__queue_work+0x875/0xaf0 ... RSP: 0018:ffff88806d108b10 EFLAGS: 00010086 RAX: 0000000000000000 RBX: 0000000000000101 RCX: 0000000000000027 RDX: 0000000000000027 RSI: 0000000000000004 RDI: ffff88806d123e88 RBP: ffffffff813c3170 R08: 0000000000000000 R09: ffffed100da247d2 R10: ffffed100da247d1 R11: ffff88806d123e8b R12: ffff88800c00f000 R13: ffff88800d7285c0 R14: ffff88806d0a5580 R15: ffff88800d7285a0 FS: 0000000000000000(0000) GS:ffff8880e5725000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe18e45ea10 CR3: 0000000005e6c000 CR4: 00000000000006f0 Call Trace: <IRQ> ? kasan_report+0xc6/0xf0 ? __pfx_delayed_work_timer_fn+0x10/0x10 ? __pfx_delayed_work_timer_fn+0x10/0x10 call_timer_fn+0x25/0x1c0 __run_timer_base.part.0+0x3be/0x8c0 ? __pfx_delayed_work_timer_fn+0x10/0x10 ? rcu_sched_clock_irq+0xb06/0x27d0 ? __pfx___run_timer_base.part.0+0x10/0x10 ? try_to_wake_up+0xb15/0x1960 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 tmigr_handle_remote_up+0x603/0x7e0 ? __pfx_tmigr_handle_remote_up+0x10/0x10 ? sched_balance_trigger+0x1c0/0x9f0 ? sched_tick+0x221/0x5a0 ? _raw_spin_lock_irq+0x80/0xe0 ? __pfx__raw_spin_lock_irq+0x10/0x10 ? tick_nohz_handler+0x339/0x440 ? __pfx_tmigr_handle_remote_up+0x10/0x10 __walk_groups.isra.0+0x42/0x150 tmigr_handle_remote+0x1f4/0x2e0 ? __pfx_tmigr_handle_remote+0x10/0x10 ? ktime_get+0x60/0x140 ? lapic_next_event+0x11/0x20 ? clockevents_program_event+0x1d4/0x2a0 ? hrtimer_interrupt+0x322/0x780 handle_softirqs+0x16a/0x550 irq_exit_rcu+0xaf/0xe0 sysvec_apic_timer_interrupt+0x70/0x80 </IRQ> ... The following diagram reveals the cause of the above warning: CPU 0 (remove) | CPU 1 (delayed work callback) mscc_ocelot_remove() | ocelot_deinit() | ocelot_check_stats_work() ocelot_stats_deinit() | cancel_delayed_work()| ... | queue_delayed_work() destroy_workqueue() | (wait a time) | __queue_work() //UAF The above scenario actually constitutes a UAF vulnerability. The ocelot_stats_deinit() is only invoked when initialization failure or resource destruction, so we must ensure that any delayed work items cannot be rescheduled. Replace cancel_delayed_work() with disable_delayed_work_sync() to guarantee proper cancellation of the delayed work item and ensure completion of any currently executing work before the workqueue is deallocated. A deadlock concern was considered: ocelot_stats_deinit() is called in a process context and is not holding any locks that the delayed work item might also need. Therefore, the use of the _sync() variant is safe here. This bug was identified through static analysis. To reproduce the issue and validate the fix, I simulated ocelot-swit ---truncated---